V-RULES: Impact of Treatment Setting on CPX-351 Safety and Effectiveness in **Secondary Acute Myeloid Leukemia**

Thomas W. LeBlanc, Catherine Lai, Amir Ali, Onyee Chan, Doria Cole, Sesus D. Gonzalez-Lugo, Kristin L. Koenig, Mimi Lo, Matthew J. Newman, Saemi Park, Giuseppe Piccoli, Rene Francia, Rene Francia, Kener Francia, Magner, Ma George Yaghmour,12 Eunice S. Wang13

Department of Medicine, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacy, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Medicine, Durham, NC, USA; Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Medicine, Durham, NC, USA; Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Medicine, Durham, NC, USA; Department of Medicine, Durham, NC Stazz Pharmaceuticals pic, Dublin, Ireland; Division of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA; Department of Pharmacy, University of California San Francisco, CA, USA; Pepartment of Pharmacy, The Johns Hopkins Hospital, Baltimore, MD, USA; "Department of Pharmacy, University of Ptarmacy, University of Youther California, Los Angeles, CA, USA; "Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; "Jane Anne Nohl Division of Hematology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; "Department of Medicine, Roswell Park

*Presenting author

Background

- Patients with acute myeloid leukemia (AML) have traditionally received intensive chemotherapy (IC) in the inpatient setting due to the need for continuous infusion and close monitoring of potential IC-related toxicities, resulting in substantial healthcare resource utilization (HCRU)¹⁻³
- Conventional 7+3 chemotherapy is administered as 7 days continuous infusion of cytarabine + 3 days of once-daily injections of an anthracycline, 4 whereas CPX-351 is administered as one 90-minute infusion (on days 1, 3, and 5 for first induction and days 1 and 3 for subsequent cycles), and, therefore, may be more amenable to administration in an outpatient setting^{1,5,6}
- HCRU analyses of the CPX-351 vs 7+3 pivotal phase 3 trial in older adults with newly diagnosed high-risk or secondary AML showed that CPX-351, in addition to significantly improving overall survival and remission rate vs 7+3, was associated with shorter hospital stays and comparable supportive care use^{1,6}
- Similarly, the real-world CREST-UK study reported that outpatient treatment with CPX-351 was feasible for all treatment stages, with the outpatient setting associated with a reduced need for hospital treatment in the UK healthcare system?
- The Vyxeos® Real-world US Long-term Effectiveness and Safety (V-RULES) study highlighted the real-world effectiveness and safety of CPX-351 in US patients with newly diagnosed secondary AML,8 and provides an opportunity to explore real-world CPX-351 HCRU within the US healthcare system

Objective

To report hospitalization incidence and duration, and safety of CPX-351 by treatment setting (inpatient vs outpatient) in the V-RULES study

Methods

- V-RULES was a retrospective, multicenter, single-arm, observational study
- Pseudonymized data were collected from medical records of eligible patients with newly diagnosed therapy-related AML (t-AML) or AML with myelodysplasia-related changes (AML-MRC; according to the World Health Organization criteria 2016 or 2022) who received ≥1 infusion of CPX-351 monotherapy in routine practice between October 26, 2017, and May 29, 2024, at 10 US centers
- Patient selection for delivery setting and dosing schedules were based on local decisions and policies
- Safety was assessed by delivery setting during first induction, and also after first induction for patients who received ≥2 CPX-351 cycles to align and compare with the CREST-UK study⁷
- Descriptive statistics were used to report HCRU and safety by delivery setting (inpatient vs outpatient)
- The study was designed to be descriptive, without hypothesis testing

Results

Table 1. Baseline Patient and Disease Characteristics in the Overall V-RULES Population	ion
---	-----

	Overall (N=161)
Age at AML diagnosis	
Median, years (range)	60 (21, 78)
<60 years, n (%)	78 (48)
≥60 years, n (%)	83 (52)
Male, an (%)	94 (58)
Race, ^b n (%)	
American Indian or Alaska Native	1 (0.6)
Asian	5 (3)
Black or African American	21 (13)
White	116 (73)
Other	15 (9)
Ethnicity, n (%)	
Hispanic or Latino	18 (11)
Not Hispanic or Latino	136 (84)
Unknown	7 (4)
ECOG PS, ^c n (%)	
0	37 (28)
1	78 (60)
2	13 (10)
3	3 (2)
Missing, n	30
AML subtype, n (%)	
t-AML	47 (29)
AML-MRC	114 (71)
Prior MDS ^d	32 (28)
Prior CMML ^d	4 (4)
MDS-related cytogenetic abnormalities ^d	69 (60)
Multilineage dysplasia alone ^d	9 (8)
Grimwade cytogenetic classification, en (%)	
Favorable	9 (6)
Intermediate	57 (37)
Adverse	88 (57)
Molecular abnormalities, n (%)	
TP53 mutation ^f	33 (25)
MDS-related gene mutations ⁹	57 (63)
	1 (0, 12)

status; MDS, myelodysolastic syndrome; t-AML, therapy-related acute myeloid leukemia; 7P53, tumor protein p53; V-RULES, Vyxeos Real-world US Long-term Effectiveness and Safety

- In V-RULES, 161 patients (t-AML: 47/161 [29%]; AML-MRC: 114/161 [71%]) received between ≥1 and ≤4 cycle(s) of CPX-351
- Median follow-up time was 9.7 months (quartile 1, quartile 3: 4.1, 27.8)
- During first induction, 134 patients and 27 patients were treated with CPX-351 as inpatients and outpatients, respectively
- Overall, 64 patients received ≥2 cycles of CPX-351: after first induction, 43 patients received ≥1 subsequent cycle(s) as outpatients, and 21 patients received all subsequent cycles as inpatients

Table 3. Safety by Delivery Setting During First Induction

	Inpatient (n=134)			Outpatient (n=27)				
	Grades 3-5	Grade 3	Grade 4	Grade 5	Grades 3-5	Grade 3	Grade 4	Grade 5
TEAE,a n (%)								
Bleeding	9 (7)	8 (6)	0	1 (1)	2 (7)	2 (7)	0	0
Febrile neutropenia	56 (42)	56 (42)	0	0	9 (33)	7 (26)	2 (7)	0
Gastrointestinal toxicity	13 (10)	13 (10)	0	0	1 (4)	1 (4)	0	0
Infection	28 (21)	21 (16)	6 (4)	1 (1)	3 (11)	3 (11)	0	0
Bacteremia	6 (4)	5 (4)	1 (1)	0	3 (11)	3 (11)	0	0
Cellulitis	7 (5)	7 (5)	0	0	0	0	0	0
Sepsis	15 (11)	10 (7)	4 (3)	1 (1)	0	0	0	0
Treatment-related TEAE, n (%)								
Pericarditis, myocarditis, endocarditis, cardiomyopathy, arrythmias, or other rhythm abnormalities	9 (7)	8 (6)	0	1 (1)	3 (11)	3 (11)	0	0
Newly developed arrhythmias	3 (2)	3 (2)	0	0	2 (7)	2 (7)	0	0
^a Δdverse event subtynes reported occurred in >5% of natients in either natient of	nroun							

 During first induction, compared with patients treated in the inpatient setting, the rates of grade ≥3 treatment-emergent adverse events (TEAEs) in the outpatient setting were lower

Table 4. Safety by Delivery Setting After First Induction

	Inpatient (n=21)			Outpatient (n=43)				
	Grades 3-5	Grade 3	Grade 4	Grade 5	Grades 3-5	Grade 3	Grade 4	Grade 5
TEAE,a n (%)								
Bleeding	5 (24)	4 (19)	0	1 (5)	6 (14)	6 (14)	0	0
Febrile neutropenia	7 (33)	7 (33)	0	0	20 (47)	20 (47)	0	0
Gastrointestinal toxicity	2 (10)	2 (10)	0	0	5 (12)	5 (12)	0	0
Infection	14 (67)	9 (43)	5 (24)	0	17 (40)	15 (35)	1 (2)	1 (2)
Bacteremia	1 (5)	1 (5)	0	0	8 (19)	7 (16)	1 (2)	0
Cellulitis	2 (10)	2 (10)	0	0	5 (12)	5 (12)	0	0
Colitis	4 (19)	4 (19)	0	0	2 (5)	2 (5)	0	0
Pneumonia	4 (19)	3 (14)	1 (5)	0	2 (5)	2 (5)	0	0
Sepsis	9 (43)	5 (24)	4 (19)	0	6 (14)	5 (12)	0	1 (2)
Treatment-related TEAE, n (%)								
Pericarditis, myocarditis, endocarditis, cardiomyopathy, arrythmias, or other rhythm abnormalities	2 (10)	2 (10)	0	0	1 (2)	1 (2)	0	0
*Adverse event subtypes reported occurred in >5% of patients in either patient ord	nun.							

TEAE, treatment-emergent adverse event.

After first induction, compared with patients treated in the inpatient setting, the rates of grade ≥3 TEAEs of bleeding and infection in the outpatient setting were lower

Table 2. Hospitalization Incidence and Duration by Delivery Setting During CPX-351 Induction and Consolidation

	Overall	Inpatients	Outpatients	Outpatients Who Required Hospitalization				
Induction 1								
Number of patients, n (%)	161 (100)	134 (83)	27 (17)	20 (74)				
Days in ward, median (Q1, Q3)	32 (22, 40) ^a	33 (26, 41)	22 (0, 34) ^a	26 (22, 34) ^a				
Induction 2								
Number of patients, n (%)	19 (100)	17 (89)	2 (11)	1 (50)				
Days in ward, median (Q1, Q3)	32 (4, 43)	33 (28, 43)	5 (0, 10)	10 (10, 10)				
Consolidation 1								
Number of patients, n (%)	50 (100)	9 (18)	41 (82)	10 (24)				
Days in ward, median (Q1, Q3)	0 (0, 4)	8 (6, 27)	0 (0, 0)	4 (3, 16)				
Consolidation 2								
Number of patients, n (%)	10 (100)	1 (10)	9 (90)	2 (22)				
Days in ward, median (Q1, Q3)	0 (0, 4)	45 (45, 45)	0 (0, 0)	8 (4, 11)				

Q1, quartile 1; Q3, quartile 3.

- For all stages of treatment with CPX-351, patients treated in the outpatient setting had shorter hospital stays compared with patients treated in the inpatient setting
- Patients who received outpatient treatment with CPX-351 spent a median of 11, 28, 8, and 45 days fewer on the ward compared with inpatient administration during first induction (n=27), second induction (n=2), first consolidation (n=41), and second consolidation (n=9), respectively
- Regardless of treatment setting, no patients required intensive care unit (ICU) support during first induction, second induction, or first consolidation; during second consolidation, 2 patients initially treated as outpatients required ICU support (median of 4 days in ICU)

Conclusions

- In the V-RULES study, outpatient delivery of CPX-351 in the US was feasible, especially during consolidation, with a reduction in hospitalization incidence and duration, and did not appear to be associated with increased adverse events compared with inpatient treatment
- These results are consistent with those observed in the UK healthcare system from the CREST-UK study and highlight important potential resource benefits of outpatient CPX-351 treatment⁷
- Together, the data from the V-RULES and CREST-UK studies reinforce the outpatient results from post hoc analyses of the CPX-351 phase 3 trial^{1,6}
- The V-RULES findings provide insights into real-world use of CPX-351 in US patients with t-AML or AML-MRC, highlighting an opportunity for outpatient treatment for some patients

rences: 1. Villa KF, et al. J Med Econ. 2020;23(7);714-720. 2. Hagiwara M, et al. J Med Econ. 2024;205(4):1326-1336. 8. LeBlanc TW, et al. J Clin Oncol. 2018;36(26):2684-2692. 6. Kolitz JE, et al. L buk Lymphoma. 2020;61(3):631-640. 7. Mehta P, et al. Br J Haematol. 2024;205(4):1326-1336. 8. LeBlanc TW, et al. J Clin Oncol. 2018;36(26):2684-2692. 6. Kolitz JE, et al. J Med Econ. 2018;36(26):2684-2692. 6. Kolitz JE, et al. Br J Haematol. 2024;205(4):1326-1336. 8. LeBlanc TW, et al. J Clin Oncol. 2018;36(26):2684-2692. 6. Kolitz JE, et al. J Med Econ. 2018;36(26):2684-2692. 6. Kolitz J 9. Döhner H. et al. Blood. 2022;140(12):1345-1377.

Support and Acknowledgments: This research was supported by Jazz Pharmaceuticals, Along with the authors, Jazz Pharmaceuticals, contributed to the concentration of the authors, was provided by Tring Soluta of CMC Connect, a division of IPG Health Medical Communications, with funding from Jazz Pharmaceuticals, in accordance with Good Publication Practice (GPP 2022) guidelines.

Disclosures: TW LeBlanc has served in a consulting or advisory role for AbbVie/Genentech, Agios/Servier, Apellis Pharmac Bristol Myers Squibb/Celgene, GlaxoSmithKline, Incyte, Menarini Group, Rigel, and Servier; has received travel, accommodation, or expenses from AbbVie/Genentech, Astellas Pharma, Bristol Myers Squibb/Celgene, Incyte, Menarini Group, Rigel, and Servier; has received donoraria from Genentech and Lilly, and has received royalties from UpToDate; has stock and other ownership interests in Dosentrx and Thyme Care; has received honoraria from Genentech, Jazz Pharmaceuticals, Macrogenics, Novartis, PDS Biotechnology, Pfizer, and Tailno Oncology; has received travel, accommodation, or expenses from DAVA Pharmaceuticals, Macrogenics, Novartis, PDS Biotechnology, Pfizer, and Tailno Oncology; has received honoraria from Genentech and Lilly, and has received research funding from AbbVie, Biotechnology, Pfizer, and Tailno Oncology; has received honoraria from Oncl. tier; and has received honoraria from Oncl. tier; and has received research funding from AbbVie, Cullians Florentine, Quilians Florentine

