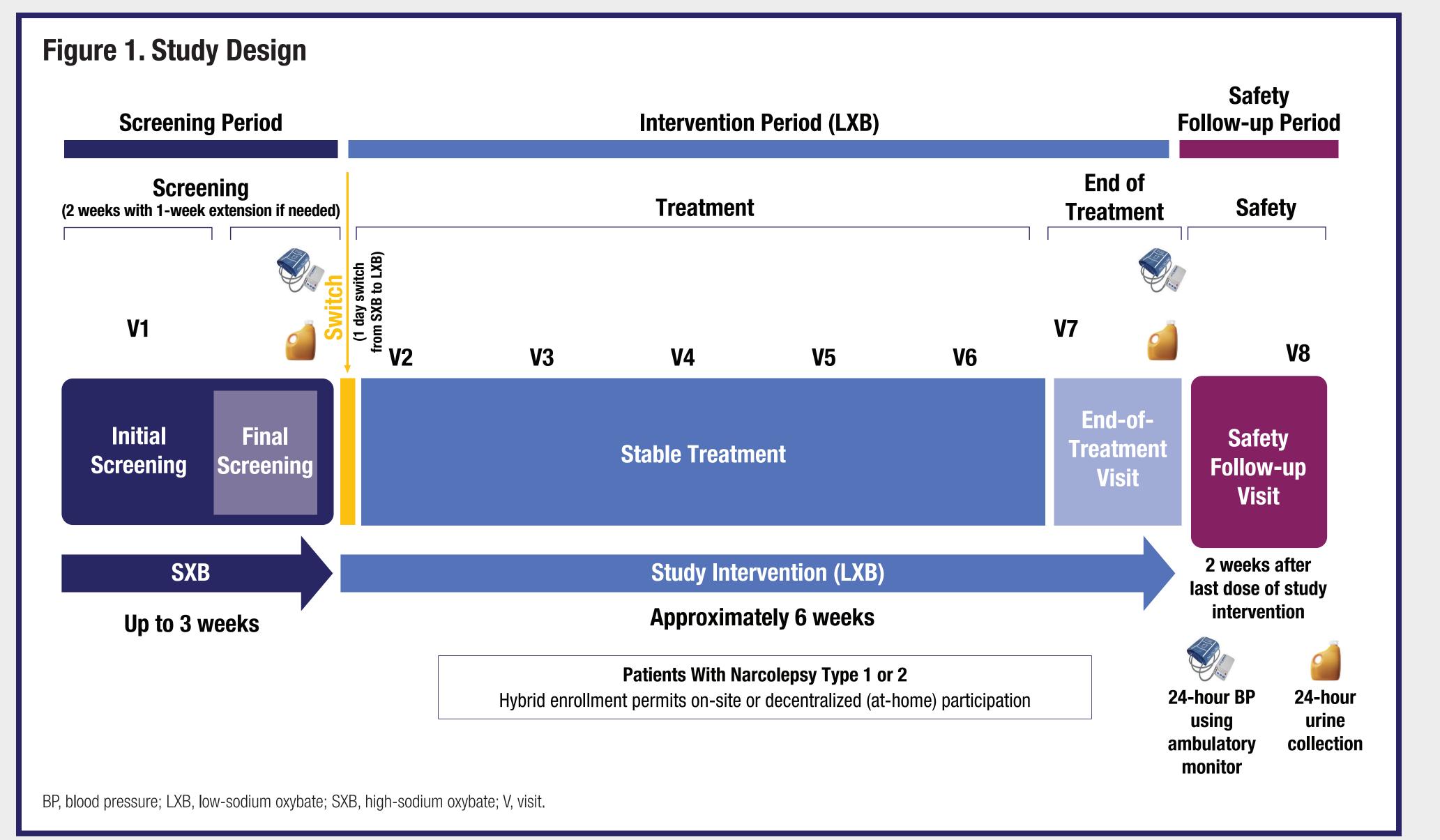
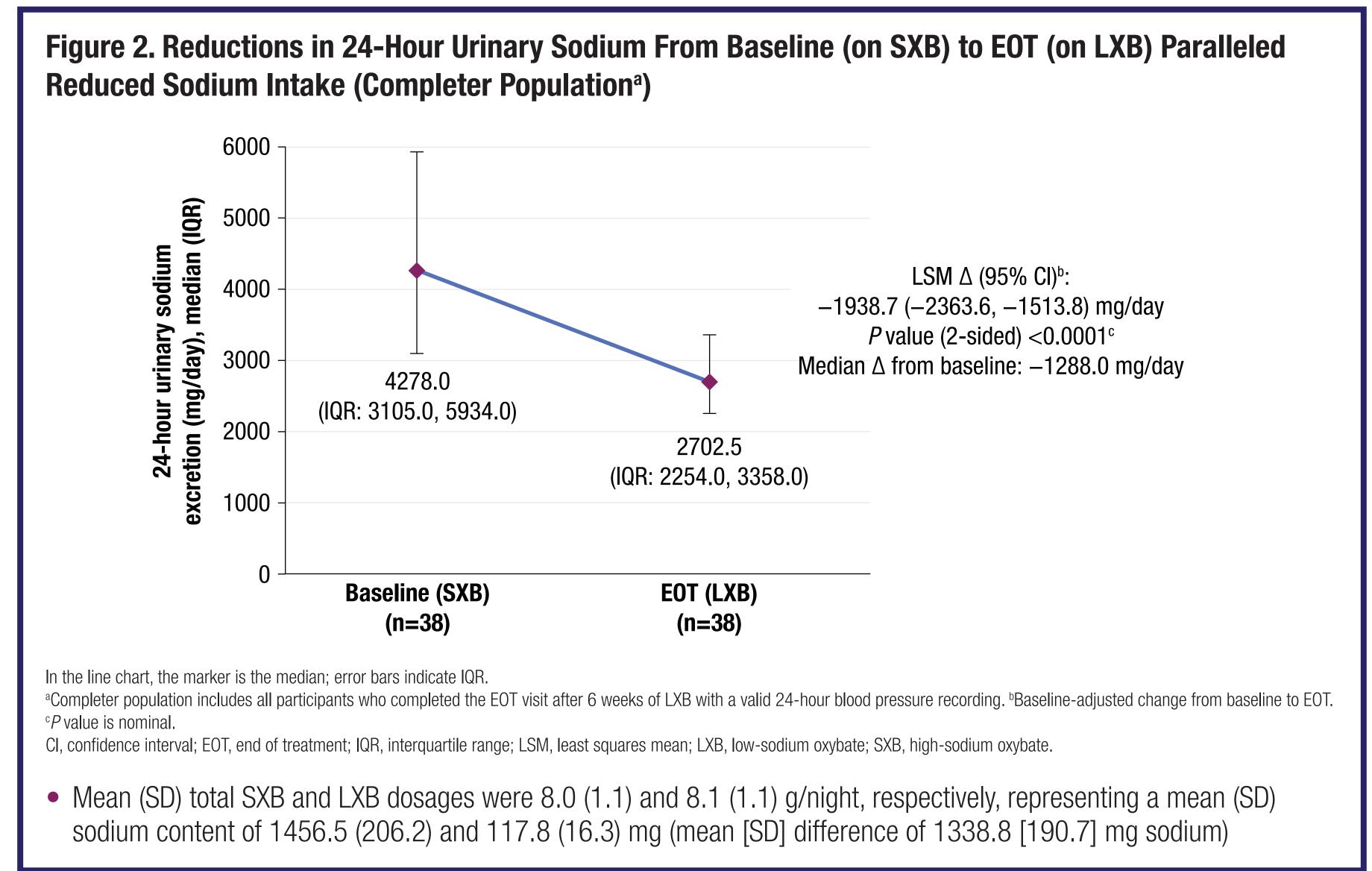
Evaluating the Impact of Switching From High-Sodium Oxybate to Low-Sodium Oxybate on Ambulatory Blood Pressure in People With Narcolepsy

Virend K. Somers, MD, PhD¹; Richard J. Kovacs, MD²; Jessica K. Alexander, PhD³; Christine Baranak, MA³; Deborah A. Nichols, MS⁴; Jing Dai, PhD⁴; Marisa Whalen, PhD⁵; Barbara Hutchinson, MD, PhD⁶; Yves Dauvilliers, MD⁷; William B. White, MD⁸ ¹Mayo Clinic, Rochester, MN, USA; ²Division of Cardiovascular Medicine, Indiana University School of Medicine, Farmington, CT, USA; ¹University of Montpellier, France; 8Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA; 10N, USA; 10N

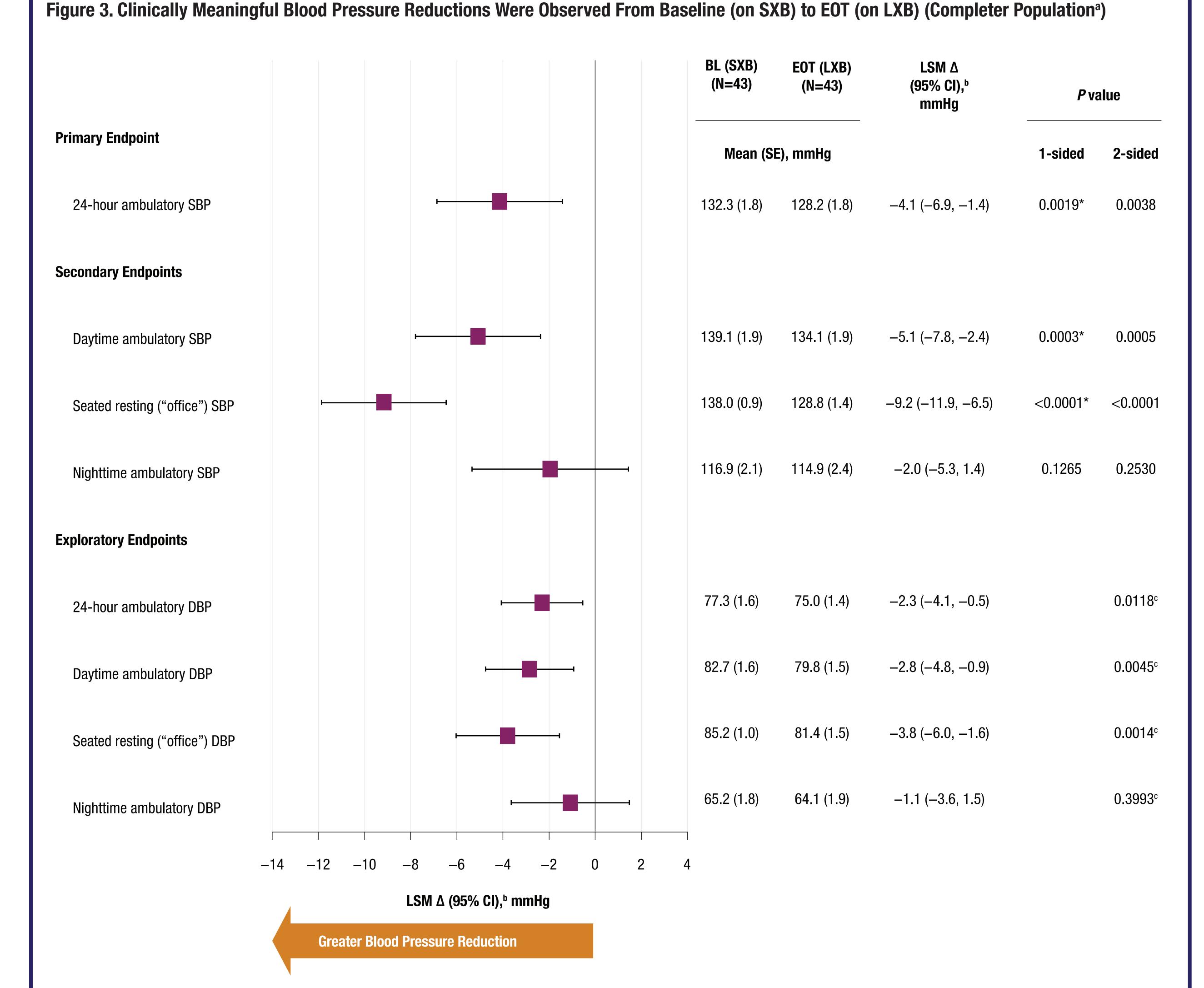

Introduction

- Excess sodium intake, consumed by ≈90% of Americans, is strongly linked to elevated blood pressure (BP) and cardiovascular
- People living with narcolepsy are at increased risk for hypertension and CVD⁷⁻¹¹
- Scientific bodies, qualified experts, and governments around the world recommend a total daily sodium intake upper limit of 2300 mg with an ideal limit of <1500 mg/day for most adults to improve BP and heart health^{1,12-17}
- High-sodium oxybate (SXB; Xyrem®) and low-sodium oxybate (LXB; Xywav®) are both approved by the US Food and Drug Administration to treat excessive daytime sleepiness or cataplexy in patients ≥7 years of age with narcolepsy; LXB is also approved to treat idiopathic hypersomnia in adults^{18,19}
- LXB has the same active moiety as SXB but with 92% less sodium^{7,18-23}

Table 1. Approximate Sodium Amounts at the Recommended Nightly Dosage of SXB or LXB % of 2300 mg Upper Daily **Recommended Adult Dosage** Sodium Amount per Nightly Exposure 1100–1640 mg 48-71% 6–9 g/night 6–9 g/night 87–131 mg 4-6% LXB, low-sodium oxybate; SXB, high-sodium oxybate.


 XYLO (NCT05869773) evaluated changes in ambulatory and seated resting ("office") BP changes in study participants with narcolepsy after switching from twice-nightly SXB to LXB

Methods


- XYLO was an open-label, single-arm, multicenter, switch study conducted in the US and Europe, enrolling participants 18 to 70 years of age with narcolepsy (type 1 or 2) taking 6 to 9 g/night of SXB for ≥6 weeks at study entry
- A hybrid study design allowed enrollment either at an investigational site or at home (decentralized; with in-person visits from study site staff) Eligibility criteria included an average screening seated resting ("office") systolic blood pressure (SBP) between 130 and 155 mmHg (inclusive) and diastolic blood pressure (DBP) ≤95 mmHg (3 BP measurements at 1-minute intervals)
- Patients with severe hypertension and target organ damage were excluded
- The primary endpoint was change from baseline (on SXB) to end of treatment (EOT; on LXB) in mean 24-hour ambulatory SBP
- Key secondary endpoints were change from baseline (SXB) to EOT (LXB) in mean daytime ambulatory, seated resting ("office"), and mean nighttime ambulatory SBP
- Exploratory endpoints included changes in mean 24-hour ambulatory, daytime ambulatory, seated resting ("office"), and nighttime mean DBP, and change in 24-hour urinary sodium
- Additional details on statistical analyses can be found in the supplemental material, available by scanning the QR code in the lower right corner of this poster

Results

Parameter	Overall (N=43)
Age, years, mean (SD)	45.0 (11.3)
Female, n (%)	28 (65.1)
Race, n (%)	
White	37 (86.0)
Black or African-American	3 (7.0)
Asian	1 (2.3)
Unknown	2 (4.7)
Ethnicity, n (%)	
Hispanic or Latino	3 (7.0)
Not Hispanic or Latino	40 (93.0)
BMI, ^b kg/m ² , mean (SD)	30.3 (7.5)
Seated resting ("office") SBP at screening, mmHg, mean (SD)	138.0 (5.7)
Seated resting ("office") DBP at screening, mmHg, mean (SD)	85.2 (6.6)
Use of antihypertensive medications, n (%)	14 (32.6)
Narcolepsy type, n (%)	
Type 1	21 (48.8)
Type 2	22 (51.2)

• Per the prespecified study design, 43 participants with valid EOT 24-hour ambulatory SBP recordings were analyzed; mean age was 45 years, 65% were female, 86% were White, and 33% were on stable antihypertensives

The marker is the LSM change, and the error bars indicate the 95%

- LSM (95% CI) change in 24-hour ambulatory SBP (primary endpoint) was -4.1 (-6.9, -1.4; P=0.0019) mmHg, achieving the interim (75%) prespecified efficacy
- The proportion of participants with office SBP <130 mmHg at baseline was 0% (per eligibility criterion) and increased to 47% at EOT; the proportion of participants with 24-hour ambulatory SBP <130 mmHg also increased from baseline (35%) to EOT (56%)

Table 3. Treatment-Emergent Adverse Events (Safety Population)

Parameter, n (%)	Overall (N=67)
TEAE ^a	27 (40.3)
Mild	21 (31.3)
Moderate	6 (9.0)
TEAE related to study drug	10 (14.9)
Serious TEAE	0 ^b
Participants with ≥1 TEAE leading to discontinuation of LXB	0
Participants with ≥1 TEAE leading to dose change of LXB	0
Common TEAEs (occurring in ≥1 participant)	
Upper respiratory tract infection	3 (4.5)
Dysgeusia	2 (3.0)
Gastroenteritis	2 (3.0)
Nausea	2 (3.0)
Vomiting	2 (3.0)

aNo TEAEs were severe, life-threatening, or fatal. A serious adverse event of "hospitalization-unknown cause" was reported for 1 participant who was lost to follow-up and which occurred afte the last known dose of study drug, which did not meet the definition of a TEAE. LXB, low-sodium oxybate; TEAE, treatment-emergent adverse event.

- Adverse events occurred in 40.3% of participants in the safety population
- All adverse events were mild or moderate in severity; all adverse events considered related to the study drug were mild in severity

Conclusions

- Switching from SXB to LXB in the XYLO study reduced daily treatment-related sodium intake by mean (SD) of 1338.8 (190.7) mg, which was paralleled by 24-hour urinary sodium reduction and associated with clinically meaningful reductions in 24-hour ambulatory and seated resting ("office") SBP
- Limitations of XYLO include the open-label, single-arm design, which affects ability to establish causality
- Reducing sodium intake from medications has important implications for BP, consistent with the robust and well-established published body of evidence on dietary and medication-related sodium reduction^{1-4,12,13,24-28}
- Given the increased risk and burden of CV conditions for people with narcolepsy,⁷⁻¹¹ these BP results help inform individuals living with narcolepsy and their healthcare providers when assessing oxybate treatment options

References: 1. Jones DW, et al. Hypertension. 2025;82:e00—e00 [Online ahead of print]. 2. National Academies for sodium in commercially processed, packaged, and prepared foods (Edition 2): Guidance for industry. 2024. https://doi.org/10.17226/25353. search-fda-guidance-documents/draft-guidance-industry-voluntary-sodium-reduction in the Food Supply. https://www.fda.gov/food/nutrition-food-supply. 7. Bogan RK, et al. Sleep. 2021;326(17):1675-1676. 6. FDA.gov. Sodium-reduction in the Food Supply. https://www.fda.gov/food/nutrition-food-supply. https://www.fda.gov/food/nutrition-food-supply. https://www.fda.gov/food/nutrition-food-labeling-and-critical-foods/sodium-reduction in the Food Supply. https://www.fda.gov/food/nutrition-food-supply. https://www.fda.gov/food-supply.gov/food-supply. https://www et al. Sleep Med Rev. 2021;58:101440. 12. US Department of Agriculture, US Department of Agriculture, US Department of Health and Human Services. Dietary guidelines-online-materials. 13. US Food and Drug Administration. Sodium-reduction. 2021. https://www.fda.gov/food/food-additives-petitions/sodium-reduction. 2021. https://www.fda.gov/food/f . 18. Xywav® (calcium, magnesium, 2013. https://www.who.int/publications/i/item/9789240069985. 18. Xywav® (calcium, magnesium, and sodium oxybates) oral solution. 2013. https://www.who.int/publications/i/item/9789240069985. 18. Xywav® (calcium, magnesium, and sodium oxybates) oral solution. 2013. https://www.who.int/publications/i/item/9789241504836. 17. World Health Organization. WHO global report on sodium oxybates) oral solution, magnesium, and sodium oxybates) oral solution. 2013. https://www.who.int/publications/i/item/9789241504836. 17. World Health Organization. WHO global report on sodium oxybates) oral solution, clil [prescribing information]. Palo Alto, CA: Jazz Pharmaceuticals, Inc. 19. Xyrem® (sodium oxybates) oral solution. 2013. https://www.who.int/publications/i/item/9789241504836. . Sacrifination. Clinical review for Binosto, NDA 202344. 2012. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202344. 2012. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202344. 2012. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202344. 2012. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202344. 2012. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202344. 2012. https://www.accessdata.fda.gov/regulatoryinformation/search-fda-guidance for industry. 2023. https://www.fda.gov/regulatoryinformation/search-fda-guidance for industry. 2023. https://www.accessdata.fda.gov/regulatoryinformation/search-fda-guidance for industry. 2023. https://www.accessdata.fda-guidance for industry. 2023. https: documents/quantitative-labeling-sodium-potassium-and-phosphorus-human-over-counter-and-prescription-drug. 23. Chen C, et al. Virgulation. 2021;143(16):1542-1567. 26. Mozaffarian D, et al. Virgulation. 2021;143(16):1542-**Support and Acknowledgments:** This study was supported by Jazz Pharmaceuticals. Under the direction of the authors, Peloton Advantage, LLC (an OPEN Health company), employees Kalpana Vijayan, PhD, and Stephanie Phan, Pharmaceuticals.

Disclosures: VK Somers is a consultant for Apnilded, Axsome, Lilly, Mineralys Therapeutics, and Jazz Pharmaceuticals who, in the course of this employees of Jazz Pharmaceuticals who, in the course of options exercisable for, and other stock awards of, ordinary shares of Jazz Pharmaceuticals. Pharmaceuticals, plc. A Ajayi is a consultant to Jazz Pharmaceuticals. B Hutchinson is a consultant to Jazz Pharmaceuticals. Pharmaceuticals, and Takeda. B Hutchinson is a consultant to Jazz Pharmaceuticals. Pharmaceuticals in advisory boards of Jazz Pharmaceuticals in advisory boards of Jazz Pharmaceuticals. Pharmaceuticals in advisory boards of Jazz for Avadel, Bioprojet, Centessa, Harmony Biosciences, Idorsia, Jazz Pharmaceuticals, and Takeda. WB White is a cardiovascular safety consultant to Jazz Pharmaceuticals.

Evaluating the Impact of Switching From High-Sodium Oxybate to Low-Sodium Oxybate on Ambulatory Blood Pressure in People With Narcolepsy

Virend K. Somers, MD, PhD¹; Richard J. Kovacs, MD²; Jessica K. Alexander, PhD³; Christine Baranak, MA³; Deborah A. Nichols, MS⁴; Jing Dai, PhD⁴; Marisa Whalen, PharmD⁴; Akinyemi Ajayi, MD⁵; Barbara Hutchinson, MD, PhD⁶; Yves Dauvilliers, MD⁷; William B. White, MD⁵ under the control of the c

Supplemental Methods

- Statistical analyses
- A 2-stage group sequential design with an adaptive sample size was used, targeting a sample size of 57 completers for 90% power to detect a mean decrease in 24-hour SBP of 3.5 mmHg with a standard deviation of 8.0 mmHg from baseline (SXB) to EOT (LXB)
- An interim analysis was planned after 43 (75%) participants completed a valid 24-hour ambulatory SBP recording at the EOT visit after 6 weeks of LXB and the study recruitment would end if the primary endpoint significance level (O'Brien-Fleming one-sided alpha level of 0.00998) was met
- Least squares mean (LSM), 95% confidence interval (Cl), and P values were obtained from an analysis of covariance model of the change for each endpoint from the baseline to the EOT, adjusted for the baseline value
- To account for multiplicity secondary to multiple endpoints, a fixed hierarchical testing method was prespecified and tested sequentially for change in mean SBP following 6 weeks of LXB after switching from SXB in the following order: 24-hour ambulatory SBP, daytime ambulatory SBP, seated resting ("office") SBP, and nighttime ambulatory SBP; other endpoints were not adjusted for multiplicity and are therefore considered nominal
- One-sided P values were reported for baseline-adjusted SBP LSM (95% Cl) changes
- Two-sided P values were reported for baseline-adjusted DBP and 24-hour urinary sodium LSM (95% CI) changes
- Study populations:
- Completer population: all participants who completed a valid (ie, meeting minimal data standards) 24-hour ambulatory BP recording at the EOT visit after 6 weeks of LXB
- Safety population: all participants who took ≥1 dose of LXB by the conclusion of the study