Clinical Characteristics and Productivity Losses Among Individuals Diagnosed With Narcolepsy or Idiopathic Hypersomnia

Adeniyi T. Togun, MD, PhD¹; Silky Beaty, PharmD, MSPH¹; Caroleen Drachenberg, PhD, MSPH¹; Jessica K. Alexander, PhD¹; Marisa Whalen, PharmD¹; Jing Dai, PhD¹; Weiyi Ni, PhD¹; Sarah C. Markt, ScD, MPH¹; Jed Black, MD¹, and the same of t

HPM, Health and Productivity Management; LTD, long-term disability; STD, short-term disability; WA, workplace absence; WC, workers' compensation.

¹Jazz Pharmaceuticals, Palo Alto, CA, USA; ²Stanford University Center for Sleep Sciences and Medicine, Palo Alto, CA, USA

Introduction

- Narcolepsy and idiopathic hypersomnia are central disorders of hypersomnolence primarily characterized by excessive daytime sleepiness¹
 Other narcolepsy symptoms include cataplexy (narcolepsy type 1), disrupted nighttime sleep, sleep-related hallucinations, and sleep paralysis¹
- Idiopathic hypersomnia is often accompanied by severe sleep inertia, long and unrefreshing naps, prolonged nighttime sleep, autonomic complaints, and cognitive impairment¹
- While narcolepsy and idiopathic hypersomnia are associated with higher comorbidity burden and increased healthcare resource utilization (HCRU) compared with those without narcolepsy or idiopathic hypersomnia,²⁻⁴ the full spectrum of the clinical and economic burden posed by these disorders has seldom been comprehensively or comparatively explored

Objective

• This study described clinical characteristics and productivity losses in individuals with narcolepsy or idiopathic hypersomnia compared with individuals without narcolepsy or idiopathic hypersomnia

Methods

- Merative MarketScan® Research Database (MMRD) linked to the Health and Productivity Management (HPM) Database (01/01/2017–12/31/2023) were used to identify individuals with narcolepsy or idiopathic hypersomnia aged 18 to 64 years with continuous medical and pharmacy enrollment in the 365-day pre- and post-index periods
- The index date was the first diagnosis of narcolepsy or idiopathic hypersomnia
- For analyses using the HPM Database, 365 days of continuous HPM data availability in both the pre- and post-index periods was also required
- Individuals without narcolepsy or idiopathic hypersomnia were matched 2:1 to those with narcolepsy or idiopathic hypersomnia using propensity-score risk-set matching on age (within 1 year), gender, census region, relationship to employee, and cohort entry date

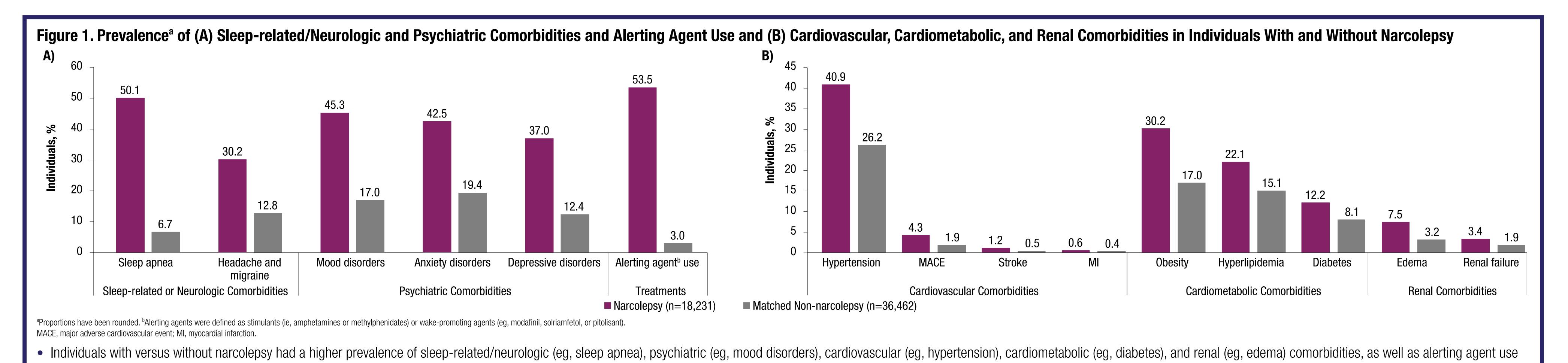
Outcomes

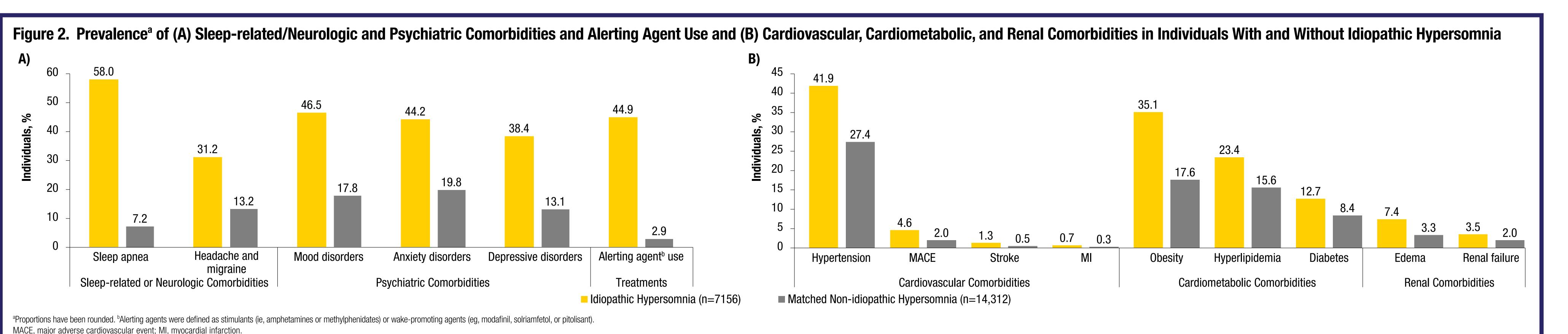
- Demographic and clinical characteristics, including comorbidities, in the pre- and post-index periods in the full MMRD population were descriptively analyzed
- Productivity characteristics: number and percentage of individuals with a short-term disability (STD), long-term disability (LTD), workers' compensation (WC), and workplace absence (WA) claim were assessed descriptively in the post-index period for employees with available HPM data
- Among those with a claim, number of days of STD, LTD, WC, and WA absence were calculated
- Indirect costs per person, per year were calculated among individuals with STD, LTD, WC, and WA claims, multiplying days absent by the median weekly earnings of full-time workers (\$1145) in the fourth quarter of 2023

Results

Table 1. Demographic Characteristics in the MMRD Population

	Narcolepsy (n=18,231)	Matched Non-narcolepsy (n=36,462)	Idiopathic Hypersomnia (n=7156)	Matched Non-idiopathic Hypersomnia (n=14,312)
Age, mean (SD), years	40.0 (13.1)	40.4 (13.1)	41.1 (12.8)	41.5 (12.8)
Gender, n (%)				
Female	11,714 (64.3)	23,428 (64.3)	4725 (66.0)	9449 (66.0)
Male	6517 (35.7)	13,034 (35.7)	2431 (34.0)	4863 (34.0)
Region				
Northeast	1945 (10.7)	3889 (10.7)	773 (10.8)	1547 (10.8)
North Central	5139 (28.2)	10,276 (28.2)	1962 (27.4)	3922 (27.4)
South	9461 (51.9)	18,923 (51.9)	3496 (48.9)	6993 (48.9)
West	1667 (9.1)	3335 (9.1)	917 (12.8)	1834 (12.8)
Unknown	19 (0.1)	39 (0.1)	8 (0.1)	16 (0.1)

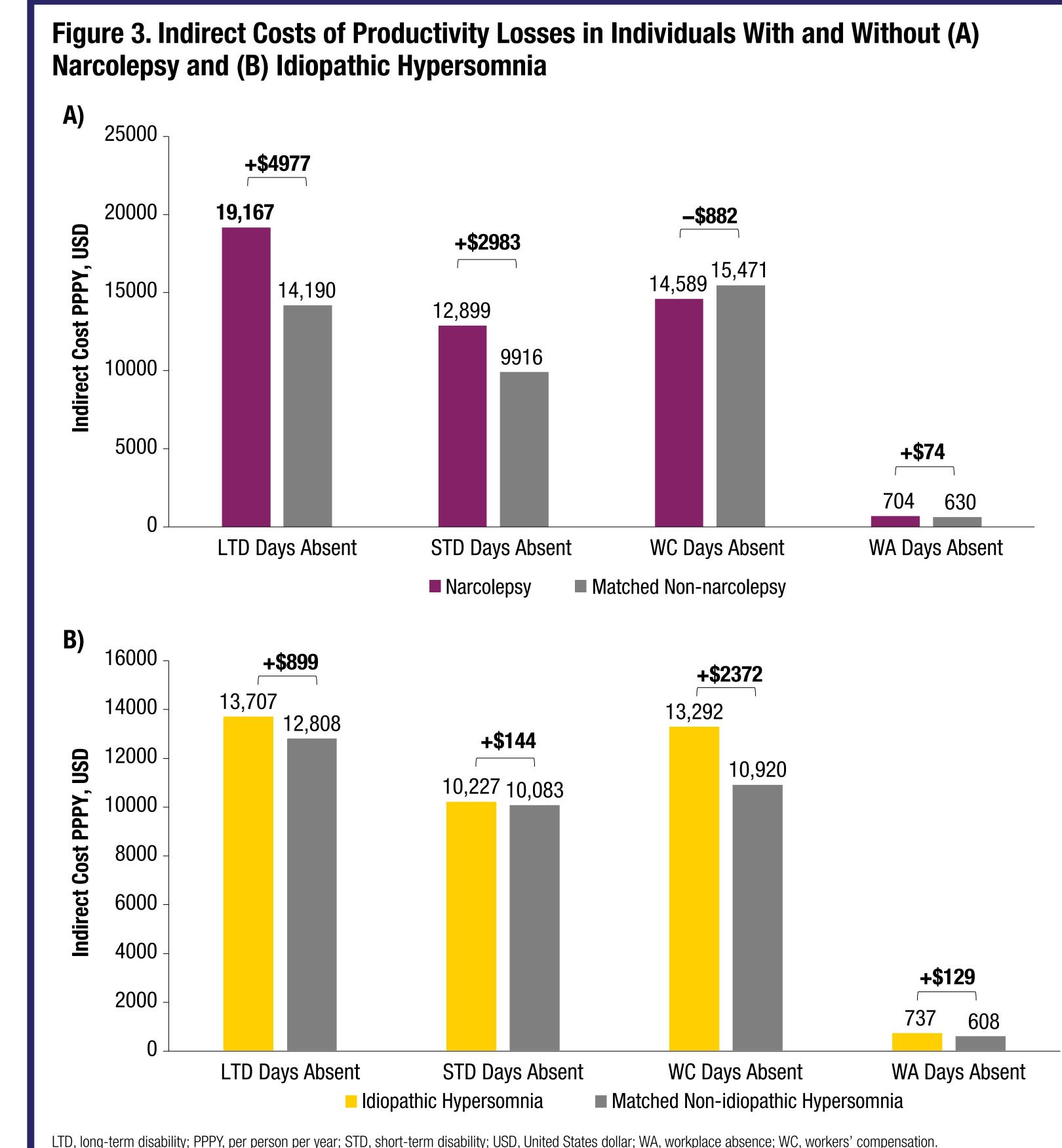

MMRD, Merative MarketScan Research Database; SD, standard deviation.


- The study sample included 18,231 individuals with narcolepsy, matched to 36,462 individuals without narcolepsy; the mean (standard deviation [SD]) age in the cohorts was 40.0 (13.1) and 40.4 (13.1) years, respectively, and 64.3% were female
- The idiopathic hypersomnia cohort comprised 7156 individuals, matched to 14,312 individuals without idiopathic hypersomnia; the mean (SD) age in the cohorts was 41.1 (12.8) and 41.5 (12.8) years, respectively, and 66.0% were female

References: 1. American Academy of Sleep Medicine. *International Classification of Sleep Disorders — Third Edition, Text Revision*. Darien, IL: American Academy of Sleep Medicine; 2023. **2.** Saad R, et al. *Nat Sci Sleep*. 2025;17:1743-1755. **3.** Black J, et al. *Sleep Med*. 2014;15(5):522-529. **4.** Black J, et al. *Sleep Med*. 2017;33:13-18.

Support and Acknowledgments: This study was supported by Jazz Pharmaceuticals. Under the direction of the authors, Peloton Advantage, LLC (an OPEN Health company), employees Aeja Jackson, PhD, MS, and Eleanor Bush, MA, provided medical writing support, and an editor provided editorial support for this poster, which were funded by Jazz Pharmaceuticals.

Disclosures: AT Togun, S Beaty, C Drachenberg, JK Alexander, M Whalen, J Dai, W Ni, and SC Markt are full-time employees of Jazz Pharmaceuticals who, in the course of this employment, have received stock options exercisable for, and other stock awards of, ordinary shares of Jazz Pharmaceuticals, plc. J Black is a part-time employee of Jazz Pharmaceuticals and shareholder of Jazz Pharmaceuticals, plc.



• Individuals with versus without idiopathic hypersomnia had a higher prevalence of sleep-related/neurologic (eg, sleep apnea), psychiatric (eg, hypertension), cardiovascular (eg, diabetes), and renal (eg, edema) comorbidities, as well as alerting agent use

Table 2. Productivity Losses In Individuals With and Without Narcolepsy and Idiopathic Hypersomnia Matched Non-idiopathic Idiopathic Non-narcolepsy Narcolepsy **Hypersomnia Hypersomnia** Short-term Disability, an 950 5106 1900 151 (7.9) 99 (10.4) 404 (7.9) STD claimants, n (%) Workdays absent.b n Long-term Disability, a n 1899 5106 28 (0.5) 8 (0.4) LTD claimants, n (%) Workdays absent.b n 1194 1812 Workers' Compensation, an WC claimants, n (%) Workdavs absent.b n 358 Workplace Absence, a n 140 (78.2) 243 (67.9) 205 (50.4) 509 (62.5) WA claimants, n (%) Workdays absent.^b n ^aNumber in HPM database with available data. ^bAverage number of workdays absent among those with ≥1 claim

- Higher proportions of individuals with versus without narcolepsy had at least 1 claim for STD and LTD; among those with STD or LTD claims, individuals with narcolepsy recorded more STD and LTD workdays absent
- Similar proportions in the narcolepsy and non-narcolepsy cohort had WC claims, but among those with WC claims, individuals with narcolepsy recorded fewer WC workdays absent
- A smaller proportion of individuals with versus without narcolepsy had WA claims, but among those with WA claims, individuals with narcolepsy recorded more WA workdays absent
- Higher proportions of individuals with versus without idiopathic hypersomnia had claims for STD, LTD, WC, and WA
- Among those with claims, individuals with idiopathic hypersomnia had more STD, LTD, WC, and WA workdays absent

Conclusions

 Individuals with narcolepsy or idiopathic hypersomnia had higher comorbidity burden, productivity losses, and indirect costs compared with individuals without narcolepsy or idiopathic hypersomnia

The total indirect costs of LTD and STD days absent were higher for individuals with narcolepsy versus

Individuals with idiopathic hypersomnia had higher indirect costs than those without idiopathic

hypersomnia for LTD and STD days by a difference of \$899 and \$144, respectively

those without narcolepsy by a difference of \$4977 and \$2983, respectively

- Limitations of the study include the small sample sizes for the HPM subsets and lack of information about reasons for disability-related days missed from work
- Findings underscore the high comorbidity burden, productivity losses, and indirect costs in these populations and need for more holistic management of narcolepsy and idiopathic hypersomnia to mitigate excess comorbidity-related, personal, and societal impact

This code is not for promotional purposes.

Presented at Psych Congress 2025; September 17–21, 2025; San Diego, CA, USA