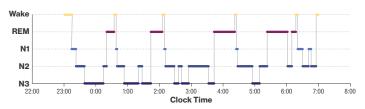

Sleep Architecture in Healthy Adults and Patients With Narcolepsy and Idiopathic Hypersomnia


Healthy Sleep Architecture

Percentage of Time Spent in Sleep/Wake States During Nocturnal Sleep Period¹

Hypnogram in an Individual With Healthy Sleep^{2,a}

A healthy hypnogram reflects an alternating pattern of sleep-wake stages in approximately 90-minute cycles¹

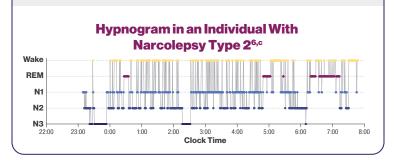
Sleep Architecture in Narcolepsy and Idiopathic Hypersomnia

Sleep in Narcolepsy

- Individuals with narcolepsy often report poor sleep quality and frequent nocturnal awakenings, known as disrupted nighttime sleep³
- Sleep instability in narcolepsy involves spontaneous awakenings, arousals, and excessive sleep stage transitions⁴
- Transitions become irregular in patients with narcolepsy, causing manifestations of sleep to intrude into the waking state and wakefulness to intrude into the sleep state⁴

A recent review found that compared with healthy controls or individuals with self-reported hypersomnolence, individuals with narcolepsy have demonstrated:4

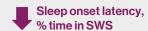
% time in N2 sleep,^b % time in SWS % time in N1 sleep, arousals/ awakenings, sleep stage transitions


Findings on changes in TST and WASO were mixed

A retrospective study found that compared with healthy controls, individuals with narcolepsy have demonstrated:5

SOL, REM latency, % time in SWS, % time in REM

% time in N1/N2 sleep, arousals/awakenings


No change in TST, WASO, or sleep efficiency

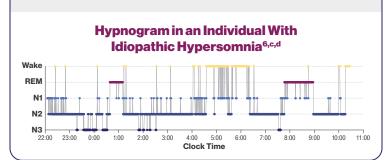
Sleep in Idiopathic Hypersomnia

- Sleep architecture in patients with idiopathic hypersomnia is not yet fully understood and is an active area of investigation
- Individuals with idiopathic hypersomnia often report prolonged, nonrestorative nighttime sleep^{7,8}
- Diagnostic criteria for idiopathic hypersomnia include objective mean sleep onset latency ≤8 min and/or total sleep time ≥660min/24h⁸
- Patients with idiopathic hypersomnia may also have less stable or less consolidated SWS, which could contribute to the nonrestorative nature of nighttime sleep associated with idiopathic hypersomnia⁹

A meta-analysis found that compared with controls, individuals with idiopathic hypersomnia have demonstrated:10

Total sleep time, % time in REM

No difference in sleep efficiency and REM latency


A retrospective study found that, compared with healthy controls, individuals with idiopathic hypersomnia had:¹¹

Sleep onset latency

TST

TST, time in N2

Trends for higher sleep efficiency and more time in REM

"Figure adapted from Blume C, et al. Front Hum Neurosci. 2015;9:1-14. https://creativecommons.org/licenses/by/4.0. "In patients with narcolepsy type 1/with cataplexy. "Narcolepsy and idiopathic hypersomnia hypnograms are derived from the pre-treatment phase of Jazz DUET (Develop hypersomnia Understanding by Evaluating low-sodium oxybate Treatment): a phase 4, prospective, multicenter, single-arm, open-label interventional study evaluating sleep architecture in a narcolepsy cohort and idiopathic hypersomnia cohort." "Sleep architecture may differ in patients with long sleep time compared with those without long sleep time.

h, hour; min, minute; N1/2/3, non-REM stage 1/2/3 sleep; REM, rapid eye movement; SOL, sleep onset latency; SWS, slow wave sleep; TST, total sleep time; WASO, wake after sleep onset

References: 1. Carskadon MA, Dement, WC. Monitoring and staging human sleep. In MH Kryger, T Roth, & WC Dement (Eds.), Principles and Practice of Sleep Medicine, 5th edition; 2011:16-26. 2. Blume C, et al. Front Hum Neurosci. 2015;91-14. 3. Roth T et al. J Clin Sleep Med. 2013;9:955-965. 4. Maski K, et al. J Clin Sleep Med. 2022;18:289-304. 5. Jiménez-Correa U, et al. Ara Neuropsiquiatr. 2009;67:995-1000. 6. Data on file. Jazz Pharmaceuticals. 7. Vernet C et al. J Sleep Res. 2010;19:525-534. 8. American Academy of Sleep Medicine; 2023. 9. Maski KP, et al. Sleep. 2021;44:zsab021. 10. Plante DT. Sleep Med. 2018;45:17-24. 11. Deshaies-Rugama A-S, et al. Sci Rep. 2024;14:16407.

