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Introduction
•	 Narcolepsy frequently remains undiagnosed for many 

years following symptom onset, likely due to little 
specific education for clinicians and few opportunities to 
gain experience, as well as substantial patient medical 
comorbidities (eg, sleep apnea) that may be associated with 
similar symptoms1

•	 Polysomnography (PSG) contains quantitative information 
that, with use of machine learning (ML) algorithms, may 
help identify type 1 narcolepsy (NT1)2

	– Stephansen et al. introduced the hypnodensity graph, 
which is an ML scoring method that estimates the 
probability of each sleep stage for each epoch of sleep, 
thereby conveying more information about sleep trends 
than classical hypnograms2

	– Applying deep learning–derived hypnodensity features 
to the diagnosis of NT1, Stephansen et al. showed that 
analysis of a single nocturnal PSG can perform as well 
as the gold standard PSG–multiple sleep latency test 
(MSLT)2; however, the algorithm performed inadequately 
in a real-world sleep clinic population

•	 The algorithms of Stephansen et al. were further developed to 
enhance performance by using data from a large sleep clinic 
population to create a tool with high sensitivity and specificity 
to alert sleep clinicians about patients at risk for narcolepsy3

Objective
•	 This study aimed to further validate the utility of the 

previously developed ML evaluation of PSG data for detecting 
narcolepsy in a “real-world” sleep clinic population

Methods
•	 PSG studies were obtained in collaboration with SleepMed 

Research (now BioSerenity, USA) from a random sample  
of sleep clinic patients being evaluated for various  
sleep conditions
	– For the initial algorithm testing and training, nocturnal 

PSG studies (narcolepsy, n=302; controls, n=21,535) 
were randomly split (1:1) into a training set and a 
validation set for testing

	• Results of MSLTs (performed the morning following 
the nocturnal PSG) were used as a proxy for 
categorizing high probability of NT1 (MSLT with ≥3 
sleep-onset rapid eye movement periods [SOREMPs] 
and mean sleep latency ≤5 minutes) and narcolepsy 
type 2 (NT2; MSLT with ≥2 SOREMPs and mean 
sleep latency ≤8 minutes [and not meeting criteria 
for NT1]); these criteria were at least as stringent 
as historical criteria4,5 and patients with MSLTs not 
meeting these criteria were excluded

	– To further validate algorithm performance, a separate, 
external PSG data set (narcolepsy, n=82; controls, n=6948) 
was used for additional testing of the final model

•	 Hypnodensities were estimated from PSGs on 15-second 
epochs using a previously developed convolutional  
neural network

•	 Feature engineering was applied to hypnodensities to create 
a feature vector that was used to train a Gaussian process 
(GP) model to identify patients with a high probability of 
having narcolepsy
	– 3 approaches were considered for scaling the features: 

scaled to the 85th percentile, scaled to zero mean and 
unit variance, and unscaled

	– A recursive feature-elimination scheme was compared 
with training the GP kernel’s length scale for determining 
the subset of features that best discriminate patients 
with narcolepsy and controls

	–  A synthetic minority oversampling technique was 
applied in combination with random undersampling to 
balance the distribution of cases and controls in the 
training set

•	 The model’s performance considered receiver operating 
characteristics (ROCs) with the goal of achieving an area 
under the curve (AUC) ≥0.80 when plotting specificity 
versus sensitivity

•	 An additional goal was to achieve ≥75% specificity while 
having the system identify at least half of the patients with 
narcolepsy in the overall sample (ie, ≥50% sensitivity)

Results

•	 The model had AUCs of 0.9960 and 0.8014 for classifying narcolepsy in the training and initial testing sets, respectively 
•	 Sensitivity ranged from 73% to 65% when specificity was between 75% and 80%

•	 The model had an AUC of 0.7515 for classifying narcolepsy in the validation set
•	 Sensitivity ranged from 65% to 62% when specificity was between 75% and 80%
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Conclusions
•	The utility and performance of an ML-based 

model to detect narcolepsy were validated 
using nocturnal PSG studies from a  
real-world sleep clinic population

	– The model exceeded the predefined 
goal of specificity ≥75% with sensitivity 
≥50% in the original testing set and the 
separate validation set

•	The present model contrasts with the 
algorithm of Stephansen et al.,2 which 
performed strongly in a research study 
population but did not translate to a  
real-world clinical population

•	Results of this study support efforts to 
develop an ML-based algorithm using 
nocturnal PSG in general sleep medicine 
clinics that can offer an objective, sensitive, 
and specific tool for alerting sleep clinicians 
about patients at risk for narcolepsy

Figure 1. Algorithm-Classified Patients Who Have a High Probability of Narcolepsy (NT1 or NT2) 
With High Sensitivity and Specificity

Figure 2. Validation Set Confirmed Performance of Algorithm for Classifying Narcolepsy (NT1 or NT2) 
With High Sensitivity and Specificity

Table 1. Data Set Characteristics Figure 3. Inadequate Stephansen et al. Algorithm Performance (Low Sensitivity 
for Given Specificity) When Applied to a Real-World Dataset With Narcolepsy 
Defined as NT1 Only

MSLT, multiple sleep latency test; NT1, narcolepsy type 1; NT2, narcolepsy type 2; PSG, 
polysomnography; SOREMP, sleep-onset rapid eye movement period.
aDefined as MSLT with ≥3 SOREMPs and mean sleep latency ≤5 minutes.
bDefined as MSLT with ≥2 SOREMPs and mean sleep latency ≤8 minutes (and not meeting criteria  
for NT1).

AUC, area under the curve; NT1, narcolepsy type 1; NT2, narcolepsy type 2. AUC, area under the curve; NT1, narcolepsy type 1; NT2, narcolepsy type 2.

AUC, area under the curve; NT1, narcolepsy type 1.

Training Set
(n=10,938)

Testing Set
(n=10,899)

Total
(N=21,837)

Validation 
Set

(N=7030)

Non-
narcolepsy 
control PSG 
studies (n)

10,787 10,748 21,535 6948

Narcolepsy-
related PSG 
studies (n)

151 151 302 82

NT1a (n) 69 68 137 33

NT2b (n) 82 83 165 49
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•	 The final GP model used a Matérn 5/2 covariance kernel with  
the length-scale hyperparameter trained to determine the feature 
subset selection

•	 Input features were normalized to zero mean and unit variance
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